Package: SFM 0.1.0

SFM: A Package for Analyzing Skew Factor Models

Generates Skew Factor Models data and applies Sparse Online Principal Component (SOPC) method to estimate model parameters. It includes capabilities for calculating mean squared error, relative error, and sparsity of the loading matrix. Additionally, it includes robust regression methods such as adaptive Huber regression.The philosophy of the package is described in Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.

Authors:Guangbao Guo [aut, cre], Yu Jin [aut]

SFM_0.1.0.tar.gz
SFM_0.1.0.zip(r-4.5)SFM_0.1.0.zip(r-4.4)SFM_0.1.0.zip(r-4.3)
SFM_0.1.0.tgz(r-4.4-any)SFM_0.1.0.tgz(r-4.3-any)
SFM_0.1.0.tar.gz(r-4.5-noble)SFM_0.1.0.tar.gz(r-4.4-noble)
SFM_0.1.0.tgz(r-4.4-emscripten)SFM_0.1.0.tgz(r-4.3-emscripten)
SFM.pdf |SFM.html
SFM/json (API)

# Install 'SFM' in R:
install.packages('SFM', repos = c('https://guangbaog.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 6 scripts 47 downloads 4 exports 15 dependencies

Last updated 11 days agofrom:07e4b16b50. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winOKNov 18 2024
R-4.5-linuxOKNov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:calculate_errorshuber.reg.adaptive.skewSFMSOPC_estimation

Dependencies:elasticnetlarslatticemagrittrMASSMatrixmatrixcalcMatrixModelsmnormtnumDerivquantregsnSOPCSparseMsurvival