Package: LFM 0.1.0
LFM: Laplace Factor Model Analysis and Evaluation
Enables the generation of Laplace factor models across diverse Laplace distributions and facilitates the application of Sparse Online Principal Component (SOPC), Incremental Principal Component (IPC), Parallel Principal Component (PPC), Sparse Approximate Principal Component (SAPC), Standard Principal Component (SPC), and Farm Test methods to these models. Evaluates the efficacy of these methods within the context of Laplace factor models by scrutinizing parameter estimation accuracy, mean square error, and the degree of sparsity.
Authors:
LFM_0.1.0.tar.gz
LFM_0.1.0.zip(r-4.5)LFM_0.1.0.zip(r-4.4)LFM_0.1.0.zip(r-4.3)
LFM_0.1.0.tgz(r-4.4-any)LFM_0.1.0.tgz(r-4.3-any)
LFM_0.1.0.tar.gz(r-4.5-noble)LFM_0.1.0.tar.gz(r-4.4-noble)
LFM_0.1.0.tgz(r-4.4-emscripten)LFM_0.1.0.tgz(r-4.3-emscripten)
LFM.pdf |LFM.html✨
LFM/json (API)
# Install 'LFM' in R: |
install.packages('LFM', repos = c('https://guangbaog.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 19 hours agofrom:aad9234818. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:Ftest_LFMIPC_LFMLFMPPC_LFMSAPC_LFMSOPC_LFMSPC_LFM
Dependencies:clielasticnetFarmTestFuzzyNumbersFuzzyNumbers.Ext.2LaplacesDemonlarsmagrittrMASSmatrixcalcrbibutilsRcppRcppArmadilloRdpackrellipticalrlangRyacas0settingsSOPCxml2