Package: ISR 2025.01.14

ISR: The Iterated Score Regression-Based Estimation

We use the ISR to handle with PCA-based missing data with high correlation, and the DISR to handle with distributed PCA-based missing data. The philosophy of the package is described in Guo G. (2024) <doi:10.1080/03610918.2022.2091779>.

Authors:Guangbao Guo [aut, cre], Haoyue Song [aut], Lixing Zhu [aut]

ISR_2025.01.14.tar.gz
ISR_2025.01.14.zip(r-4.5)ISR_2025.01.14.zip(r-4.4)ISR_2025.01.14.zip(r-4.3)
ISR_2025.01.14.tgz(r-4.5-any)ISR_2025.01.14.tgz(r-4.4-any)ISR_2025.01.14.tgz(r-4.3-any)
ISR_2025.01.14.tar.gz(r-4.5-noble)ISR_2025.01.14.tar.gz(r-4.4-noble)
ISR_2025.01.14.tgz(r-4.4-emscripten)ISR_2025.01.14.tgz(r-4.3-emscripten)
ISR.pdf |ISR.html
ISR/json (API)

# Install 'ISR' in R:
install.packages('ISR', repos = c('https://guangbaog.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.08 score 2 scripts 431 downloads 6 mentions 7 exports 1 dependencies

Last updated 25 days agofrom:fc4c5f5c8b. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 27 2025
R-4.5-winOKJan 27 2025
R-4.5-macOKJan 27 2025
R-4.5-linuxOKJan 27 2025
R-4.4-winOKJan 27 2025
R-4.4-macOKJan 27 2025
R-4.3-winOKJan 27 2025
R-4.3-macOKJan 27 2025

Exports:DISRISRMeanMMLPCAMNIPALSMRPCASR

Dependencies:MASS