Package: FPCdpca 0.1.0

FPCdpca: The FPCdpca Criterion on Distributed Principal Component Analysis

We consider optimal subset selection in the setting that one needs to use only one data subset to represent the whole data set with minimum information loss, and devise a novel intersection-based criterion on selecting optimal subset, called as the FPC criterion, to handle with the optimal sub-estimator in distributed principal component analysis; That is, the FPCdpca. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.

Authors:Guangbao Guo [aut, cre, cph], Jiarui Li [ctb]

FPCdpca_0.1.0.tar.gz
FPCdpca_0.1.0.zip(r-4.5)FPCdpca_0.1.0.zip(r-4.4)FPCdpca_0.1.0.zip(r-4.3)
FPCdpca_0.1.0.tgz(r-4.4-any)FPCdpca_0.1.0.tgz(r-4.3-any)
FPCdpca_0.1.0.tar.gz(r-4.5-noble)FPCdpca_0.1.0.tar.gz(r-4.4-noble)
FPCdpca_0.1.0.tgz(r-4.4-emscripten)FPCdpca_0.1.0.tgz(r-4.3-emscripten)
FPCdpca.pdf |FPCdpca.html
FPCdpca/json (API)

# Install 'FPCdpca' in R:
install.packages('FPCdpca', repos = c('https://guangbaog.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 146 downloads 7 exports 72 dependencies

Last updated 6 months agofrom:033270ac6f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:DepcaDpcaDrpDrpcaDrsvdDsvdFPC

Dependencies:ADMMbase64encbitbit64bslibcachemclarabelcliclustercodetoolsCVXRdbscandigestdoParallelECOSolveRevaluatefastclusterfastmapfontawesomeforeachfsgenericsgluegmphighrhtmltoolshtmlwidgetsiteratorsjquerylibjsonliteknitrlabdsvlatticelifecyclemagrittrmaotaiMASSMatrixmatrixcalcmclustcompmemoisemgcvmimeminpack.lmnlmeosqppracmaR6RANNrappdirsrbibutilsRcppRcppArmadilloRcppDERcppDistRcppEigenRdimtoolsRdpackrglrlangrmarkdownRmpfrRSpectrarsvdRtsnesassscatterplot3dscsshapestinytexxfunyaml