Package 'TLIC'

Title: The LIC for T Distribution Regression Analysis
Description: This comprehensive toolkit for T-distribution regression, known as the analysis of "TLIC" (T-distribution Linear regression Integrated Corrector), adopts ordinary least squares method and assumes that errors follow a T-distribution. This approach gives it an advantage when dealing with small samples or non-normal error distributions, and can provide more robust parameter estimation and hypothesis testing results.The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Authors: Guangbao Guo [aut, cre] , Guofu Jing [aut]
Maintainer: Guangbao Guo <[email protected]>
License: MIT + file LICENSE
Version: 0.2
Built: 2024-09-26 03:25:58 UTC
Source: https://github.com/cran/TLIC

Help Index


Generate Data with T-distributed Errors

Description

Generate Data with T-distributed Errors

Usage

terr(n, nr, p, dist_type, ...)

Arguments

n

Number of observations.

nr

Number of observations with different error distribution.

p

Number of predictors.

dist_type

Type of distribution for the error terms.

...

Additional parameters for specific distributions.

Value

A list containing the design matrix X, the response vector Y, and the error vector e.

Examples

set.seed(12)
n <- 1200
nr <- 200
p <- 5
data <- terr(n, nr, p, dist_type = "student_t")
print(data$X)
print(data$Y)
print(data$e)

TLIC function based on LIC with T-distributed errors

Description

TLIC function based on LIC with T-distributed errors

Usage

TLIC(X, Y, alpha = 0.05, K = 10, nk = NULL, dist_type = "student_t")

Arguments

X

is a design matrix

Y

is a random response vector of observed values

alpha

is the significance level

K

is the number of subsets

nk

is the sample size of subsets

dist_type

Type of distribution for the error terms.

Value

MUopt, Bopt, MAEMUopt, MSEMUopt, opt, Yopt

Examples

set.seed(12)
n <- 1200
nr <- 200
p <- 5
data <- terr(n, nr, p, dist_type = "student_t")
TLIC(data$X, data$Y, alpha = 0.05, K = 10, nk = n / 10, dist_type = "student_t")