Title: | Distributed Loading Estimation for General Factor Model |
---|---|
Description: | The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>. |
Authors: | Guangbao Guo [aut, cre, cph], Yaping Li [aut] |
Maintainer: | Guangbao Guo <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.4.0 |
Built: | 2025-01-25 04:33:50 UTC |
Source: | https://github.com/cran/DLEGFM |
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
BlPC(data,m)
BlPC(data,m)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Guangbao Guo, Yaping Li
BlPC(data=ISE,m=3)
BlPC(data=ISE,m=3)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DBlPC(data,m,n1,K)
DBlPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Guangbao Guo, Yaping Li
DBlPC(data=ISE,m=3,n1=107,K=5)
DBlPC(data=ISE,m=3,n1=107,K=5)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DFanPC(data,m,n1,K)
DFanPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Guangbao Guo, Yaping Li
DFanPC(data=ISE,m=3,n1=107,K=5)
DFanPC(data=ISE,m=3,n1=107,K=5)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DGaoPC(data,m,n1,K)
DGaoPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Guangbao Guo, Yaping Li
DGaoPC(data=ISE,m=3,n1=107,K=5)
DGaoPC(data=ISE,m=3,n1=107,K=5)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DGulPC(data,m,n1,K)
DGulPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
S1hat |
estimation of covariance |
Guangbao Guo, Yaping Li
DGulPC(data=ISE,m=3,n1=107,K=5)
DGulPC(data=ISE,m=3,n1=107,K=5)
The Dow Jones industrial average (DJIA) data set.
data("DJIA")
data("DJIA")
GAS.F
a numeric vector
Nikkei.F
a numeric vector
NZD
a numeric vector
silver.F
a numeric vector
RUSSELL.F
a numeric vector
S.P.F
a numeric vector
CHF
a numeric vector
Dollar.index.F
a numeric vector
Dollar.index
a numeric vector
wheat.F
a numeric vector
XAG
a numeric vector
XAU
a numeric vector
The data set comes from the Dow Jones industrial average (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
The Stanford University Medical Center.
NA
data(DJIA) ## maybe str(DJIA) ; plot(DJIA) ...
data(DJIA) ## maybe str(DJIA) ; plot(DJIA) ...
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DPC(data,m,n1,K)
DPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Guangbao Guo, Yaping Li
DPC(data=ISE,m=3,n1=107,K=5)
DPC(data=ISE,m=3,n1=107,K=5)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
DPPC(data,m,n1,K)
DPPC(data,m,n1,K)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Guangbao Guo, Yaping Li
DPPC(data=ISE,m=3,n1=107,K=5)
DPPC(data=ISE,m=3,n1=107,K=5)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
FanPC(data,m)
FanPC(data,m)
data |
The data is total data set |
m |
The m is the number of principal component |
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Guangbao Guo, Yaping Li
FanPC(data=ISE,m=3)
FanPC(data=ISE,m=3)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
GaoPC(data,m)
GaoPC(data,m)
data |
The data is total data set |
m |
The m is the number of principal component |
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Guangbao Guo, Yaping Li
GaoPC(data=ISE,m=3)
GaoPC(data=ISE,m=3)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
GulPC(data,m)
GulPC(data,m)
data |
The data is total data set |
m |
The m is the number of first layer principal component |
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
Shat |
estimation of covariance |
Guangbao Guo, Yaping Li
GulPC(data=ISE,m=3)
GulPC(data=ISE,m=3)
The Istanbul Stock Exchange (ISE) data set.
data("ISE")
data("ISE")
ISE
a numeric vector
SP
a numeric vector
DAX
a numeric vector
FTSE
a numeric vector
NIKKEI
a numeric vector
BOVESPA
a numeric vector
EU
a numeric vector
EM
a numeric vector
The data set comes from the Istanbul Stock Exchange (ISE) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
The Stanford University Medical Center.
NA
data(ISE) ## maybe str(ISE) ; plot(ISE) ...
data(ISE) ## maybe str(ISE) ; plot(ISE) ...
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
PC(data,m)
PC(data,m)
data |
The data is a highly correlated data set |
m |
The m is the number of principal component |
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Guangbao Guo, Yaping Li
PC(data=ISE,m=3)
PC(data=ISE,m=3)
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
PPC(data,m)
PPC(data,m)
data |
The data is total data set |
m |
The m is the number of principal component |
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Guangbao Guo, Yaping Li
PPC(data=ISE,m=3)
PPC(data=ISE,m=3)
The New York Stock Exchange Composite Index SECI(SECI) data set.
data("SECI")
data("SECI")
GBP
a numeric vector
JPY
a numeric vector
CAD
a numeric vector
AAPL
a numeric vector
AMZN
a numeric vector
GE
a numeric vector
JPM
a numeric vector
MSFT
a numeric vector
WFC
a numeric vector
XOM
a numeric vector
FCHI
a numeric vector
FTSE
a numeric vector
GDAXI
a numeric vector
The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
The Stanford University Medical Center.
NA
data(SECI) ## maybe str(SECI) ; plot(SECI) ...
data(SECI) ## maybe str(SECI) ; plot(SECI) ...
The Stock Portfolio Performance (SPP) data set.
data("SPP")
data("SPP")
X1
a numeric vector
X2
a numeric vector
X3
a numeric vector
X4
a numeric vector
X5
a numeric vector
X6
a numeric vector
X7
a numeric vector
X8
a numeric vector
X9
a numeric vector
X10
a numeric vector
The data set comes from the Stock Portfolio Performance (SPP) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
The Stanford University Medical Center.
NA
data(SPP) ## maybe str(SPP) ; plot(SPP) ...
data(SPP) ## maybe str(SPP) ; plot(SPP) ...